organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 1-oxo-2,3,4,9-tetrahydro-1*H*-carbazole-2-carboxylate

A. Thiruvalluvar,^a* A. Thomas Gunaseelan,^a A. Ebenezer Martin,^b K. J. Rajendra Prasad^b and R. J. Butcher^c

^aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, ^bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, and ^cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: athiru@vsnl.net

Received 19 July 2007; accepted 21 July 2007

Key indicators: single-crystal X-ray study; T = 203 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.067; wR factor = 0.221; data-to-parameter ratio = 18.0.

In the title molecule, $C_{14}H_{13}NO_3$, the dihedral angle between the benzene ring and the fused pyrrole ring is $1.0 (1)^\circ$. The cyclohexene ring adopts a twist conformation. Three C atoms of the cyclohexene ring, with their attached H atoms, and all atoms of the ester group, are disordered over two positions; the site-occupancy factors are *ca* 0.88 and 0.12. The crystal structure is stabilized by intermolecular $N-H\cdots O$ and C- $H\cdots O$ hydrogen bonds.

Related literature

For related literature, see: Gunaseelan *et al.* (2007*a*,*b*); Thiruvalluvar *et al.* (2007).

Experimental

Crystal data

 $\begin{array}{l} C_{14}H_{13}NO_{3}\\ M_{r}=243.25\\ Triclinic, P\overline{1}\\ a=6.9814~(12)~\text{\AA}\\ b=8.1303~(13)~\text{\AA}\\ c=10.780~(2)~\text{\AA}\\ \alpha=88.575~(14)^{\circ}\\ \beta=76.881~(15)^{\circ} \end{array}$

Data collection

Oxford Diffraction Gemini	$T_{\rm min} = 0.89$
diffractometer	(expected a
Absorption correction: multi-scan	6572 measure
(CrysAlis RED; Oxford	3176 indepen
Diffraction, 2007)	1673 reflectio
. ,	$R_{\rm int} = 0.023$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.221$ S = 1.113176 reflections 176 parameters

 $T_{\min} = 0.890, T_{\max} = 1.000$ (expected range 0.872–0.980) 5572 measured reflections 8176 independent reflections 1673 reflections with $I > 2\sigma(I)$ $R_{\max} = 0.023$

6 restraints H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.80\ e\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.44\ e\ \text{\AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N9 - H9 \cdots O1^{i}$ $C14A - H14B \cdots O2A^{ii}$	0.87	2.07	2.883 (2)	155
	0.97	2.39	3.337 (3)	166

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, -y + 1, -z + 1.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2007); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2007); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2003).

RJB acknowledges the NSF–MRI program for funding to purchase the diffractometer. AT thanks the UGC, India, for the award of a Minor Research Project [File No. MRP-2355/06(UGC-SERO), Link No. 2355, 10/01/2007].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2176).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007*a*). *Acta Cryst.* E63, 02413–02414.
- Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007b). Acta Cryst. E63, 02729–02730.
- Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Thiruvalluvar, A., Gunaseelan, A. T., Martin, A. E., Prasad, K. J. R. & Butcher, R. J. (2007). *Acta Cryst.* E63, 03093.

Acta Cryst. (2007). E63, o3622 [doi:10.1107/S1600536807035660]

Methyl 1-oxo-2,3,4,9-tetrahydro-1*H*-carbazole-2-carboxylate

A. Thiruvalluvar, A. T. Gunaseelan, A. E. Martin, K. J. R. Prasad and R. J. Butcher

Comment

The title compound, has been analysed as part of our crystallographic studies on substituted carbazoles (Gunaseelan *et al.* (2007*a*, b); Thiruvalluvar *et al.* (2007)).

The molecular structure of the title compound, with the atomic numbering scheme, is shown in Fig. 1. The dihedral angle between the benzene ring and the fused pyrrole ring is 1.0 (1)°. The cyclohexene ring adopts a twist conformation. The crystal structure is stabilized by intermolecular N9—H9…O1(-x + 1,-y + 1,-z) and C14A—H14B…O2A(-x + 1,-y + 1,-z + 1) hydrogen bonds (Fig. 2).

Experimental

A mixture of methyl 2-(1-oxo-2,3,4,9-tetrahydro-1*H*-carbazol-2-yl) oxoacetate (270 mg, 0.001 mol), glass powder (500 mg) and iron powder (500 mg) in diphenyl ether (15 ml) was heated at 443–473 K for 30 min. Carbon monoxide was liberated during heating. After cooling, the mixture was extracted with ethyl acetate and purified by column chromatography over silica gel using petroleum ether/ethyl acetate (95:5 v/v) as eluant to obtain the pure title compound (100 mg, 40%), which was recrystallized from glacial acetic acid.

Refinement

Atoms C2A, C3A, C4A of the cyclohexene ring, with attached hydrogen atoms, and all atoms of the ester group are disordered over two positions; the site occupancy factors refined to 0.879 (3) and 0.121 (3). All H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H = 0.87 Å, C—H = 0.94–0.99 Å and $U_{iso}(H) = xU_{eq}(parent$ atom), where x = 1.2 or 1.5.

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms involved in hydrogen bonding have been labelled. Only the major disorder component is shown.

Fig. 2. The molecular packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted. Only the major disorder component is shown.

Methyl 1-oxo-2,3,4,9-tetrahydro-1H-carbazole-2-carboxylate

Crystal data	
C ₁₄ H ₁₃ NO ₃	Z = 2
$M_r = 243.25$	$F_{000} = 256$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.380 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Melting point: 409(1) K
<i>a</i> = 6.9814 (12) Å	Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$
b = 8.1303 (13) Å	Cell parameters from 2541 reflections
c = 10.780 (2) Å	$\theta = 4.8 - 30.6^{\circ}$
$\alpha = 88.575 \ (14)^{\circ}$	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 76.881 \ (15)^{\circ}$	T = 203 (2) K
$\gamma = 79.367 \ (14)^{\circ}$	Plate, light-brown
$V = 585.59 (18) \text{ Å}^3$	$0.36 \times 0.31 \times 0.22 \text{ mm}$

Data collection

Oxford Diffraction Gemini diffractometer	3176 independent reflections
Radiation source: fine-focus sealed tube	1673 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.023$
T = 203(2) K	$\theta_{\text{max}} = 30.7^{\circ}$
ϕ and ω scans	$\theta_{\min} = 4.8^{\circ}$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)	$h = -9 \rightarrow 9$
$T_{\min} = 0.890, T_{\max} = 1.000$	$k = -11 \rightarrow 11$
6572 measured reflections	$l = -12 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.067$	H-atom parameters constrained

$wR(F^2) = 0.221$	$w = 1/[\sigma^2(F_o^2) + (0.1197P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.11	$(\Delta/\sigma)_{max} < 0.001$
3176 reflections	$\Delta \rho_{max} = 0.80 \text{ e } \text{\AA}^{-3}$
176 parameters	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$
6 restraints	Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

F 1		1.	1	• , •			• , •	1. 1	,	,	18	2
Fractional	atomic	coordinates	and	isofronic	or	eauwalent	isofronic	displ	acement	narameters	IA	- /
1 / 00011011011	aronne	coordinates	cirici	isonopie	01	equivalent	isonopie	cuspe	accincin	parameters	(**	

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.2838 (3)	0.6953 (3)	0.1859 (2)	0.0373 (5)	
O1	0.4523 (2)	0.6125 (2)	0.17505 (15)	0.0468 (5)	
C5	-0.2646 (3)	0.8206 (3)	-0.0495 (2)	0.0478 (6)	
Н5	-0.3758	0.8873	0.0038	0.057*	
C6	-0.2759 (4)	0.7722 (3)	-0.1673 (3)	0.0521 (7)	
H6	-0.3949	0.8067	-0.1952	0.063*	
C7	-0.1117 (4)	0.6713 (3)	-0.2474 (2)	0.0493 (6)	
H7	-0.1228	0.6397	-0.3284	0.059*	
C8	0.0649 (3)	0.6177 (3)	-0.2100 (2)	0.0412 (6)	
H8	0.1742	0.5498	-0.2640	0.049*	
C8A	0.0767 (3)	0.6671 (3)	-0.0902 (2)	0.0348 (5)	
N9	0.2302 (2)	0.6317 (2)	-0.02795 (16)	0.0356 (5)	
Н9	0.3471	0.5707	-0.0583	0.043*	
C9A	0.1692 (3)	0.7085 (3)	0.0902 (2)	0.0357 (5)	
C41	-0.0244 (3)	0.7963 (3)	0.1053 (2)	0.0376 (5)	
C42	-0.0870 (3)	0.7707 (3)	-0.0082 (2)	0.0362 (5)	
C13	0.2754 (3)	0.7454 (3)	0.4124 (2)	0.0490 (7)	
C2A	0.1862 (4)	0.8086 (4)	0.3039 (3)	0.0398 (7)	0.879 (3)
H2A	0.2226	0.9198	0.2832	0.048*	0.879 (3)
C3A	-0.0392 (4)	0.8347 (4)	0.3339 (3)	0.0579 (8)	0.879 (3)
H31A	-0.0801	0.7290	0.3642	0.069*	0.879 (3)
H31B	-0.0918	0.9171	0.4037	0.069*	0.879 (3)
C4A	-0.1345 (4)	0.8929 (3)	0.2245 (2)	0.0503 (7)	0.879 (3)
H4A	-0.2742	0.8778	0.2451	0.060*	0.879 (3)
H4B	-0.1330	1.0124	0.2112	0.060*	0.879 (3)

O2A	0.2322 (3)	0.6162 (2)	0.47104 (18)	0.0558 (6)	0.879 (3)
O3A	0.3986 (3)	0.8286 (3)	0.4441 (2)	0.0502 (6)	0.879 (3)
C14A	0.4832 (4)	0.7645 (4)	0.5509 (3)	0.0583 (7)	0.879 (3)
H14A	0.5682	0.8382	0.5692	0.087*	0.879 (3)
H14B	0.5618	0.6533	0.5297	0.087*	0.879 (3)
H14C	0.3760	0.7591	0.6252	0.087*	0.879 (3)
C2B	0.146 (3)	0.742 (3)	0.325 (2)	0.0398 (7)	0.121 (3)
H2B	0.1077	0.6313	0.3477	0.048*	0.121 (3)
C3B	-0.0392 (4)	0.8347 (4)	0.3339 (3)	0.0579 (8)	0.121 (3)
H32A	-0.0423	0.9362	0.3819	0.069*	0.121 (3)
H32B	-0.1319	0.7723	0.3890	0.069*	0.121 (3)
C4B	-0.1345 (4)	0.8929 (3)	0.2245 (2)	0.0503 (7)	0.121 (3)
H41	-0.2742	0.8778	0.2451	0.060*	0.121 (3)
H42	-0.1330	1.0124	0.2112	0.060*	0.121 (3)
O2B	0.347 (2)	0.8761 (13)	0.3797 (16)	0.0558 (6)	0.121 (3)
O3B	0.3399 (16)	0.6820 (11)	0.5095 (8)	0.0502 (6)	0.121 (3)
C14B	0.4832 (4)	0.7645 (4)	0.5509 (3)	0.0583 (7)	0.121 (3)
H14D	0.4959	0.7267	0.6353	0.087*	0.121 (3)
H14E	0.4370	0.8847	0.5535	0.087*	0.121 (3)
H14F	0.6123	0.7370	0.4917	0.087*	0.121 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0329 (11)	0.0413 (12)	0.0319 (12)	-0.0019 (9)	0.0017 (9)	-0.0063 (9)
01	0.0336 (8)	0.0562 (10)	0.0431 (10)	0.0059 (7)	-0.0037 (7)	-0.0127 (8)
C5	0.0379 (12)	0.0466 (14)	0.0535 (16)	0.0005 (10)	-0.0071 (11)	0.0114 (11)
C6	0.0425 (13)	0.0549 (15)	0.0598 (17)	-0.0063 (12)	-0.0172 (12)	0.0173 (13)
C7	0.0574 (15)	0.0525 (14)	0.0437 (14)	-0.0184 (12)	-0.0173 (11)	0.0063 (11)
C8	0.0435 (12)	0.0370 (12)	0.0412 (13)	-0.0080 (10)	-0.0058 (10)	0.0030 (10)
C8A	0.0357 (11)	0.0313 (11)	0.0358 (12)	-0.0073 (8)	-0.0041 (9)	0.0040 (9)
N9	0.0281 (9)	0.0399 (10)	0.0341 (10)	-0.0007 (7)	-0.0009(7)	-0.0058 (8)
C9A	0.0332 (11)	0.0326 (11)	0.0366 (12)	-0.0026 (9)	-0.0009 (9)	-0.0033 (9)
C41	0.0324 (11)	0.0320 (11)	0.0404 (12)	0.0035 (8)	0.0009 (9)	-0.0019 (9)
C42	0.0328 (11)	0.0319 (11)	0.0392 (12)	-0.0011 (8)	-0.0030 (9)	0.0060 (9)
C13	0.0426 (13)	0.0516 (15)	0.0446 (14)	-0.0052 (11)	0.0066 (10)	-0.0231 (12)
C2A	0.0448 (15)	0.0333 (15)	0.0356 (14)	-0.0027 (12)	-0.0004 (11)	-0.0086 (12)
C3A	0.0425 (13)	0.0701 (18)	0.0487 (15)	0.0139 (12)	-0.0021 (11)	-0.0228 (13)
C4A	0.0436 (13)	0.0478 (14)	0.0471 (15)	0.0086 (11)	0.0021 (11)	-0.0067 (11)
O2A	0.0706 (14)	0.0513 (12)	0.0476 (12)	-0.0167 (10)	-0.0134 (10)	0.0046 (10)
O3A	0.0525 (12)	0.0491 (11)	0.0515 (13)	-0.0132 (9)	-0.0128 (9)	-0.0048 (10)
C14A	0.0597 (16)	0.0636 (17)	0.0539 (16)	-0.0092 (13)	-0.0189 (13)	-0.0027 (13)
C2B	0.0448 (15)	0.0333 (15)	0.0356 (14)	-0.0027 (12)	-0.0004 (11)	-0.0086 (12)
C3B	0.0425 (13)	0.0701 (18)	0.0487 (15)	0.0139 (12)	-0.0021 (11)	-0.0228 (13)
C4B	0.0436 (13)	0.0478 (14)	0.0471 (15)	0.0086 (11)	0.0021 (11)	-0.0067 (11)
O2B	0.0706 (14)	0.0513 (12)	0.0476 (12)	-0.0167 (10)	-0.0134 (10)	0.0046 (10)
O3B	0.0525 (12)	0.0491 (11)	0.0515 (13)	-0.0132 (9)	-0.0128 (9)	-0.0048 (10)
C14B	0.0597 (16)	0.0636 (17)	0.0539 (16)	-0.0092 (13)	-0.0189 (13)	-0.0027 (13)

O1—C1	1.225 (3)	C8—C8A	1.386 (3)
O2A—C13	1.262 (3)	C8A—C42	1.422 (3)
O2B—C13	1.265 (12)	C9A—C41	1.383 (3)
O3A—C13	1.293 (3)	C41—C42	1.422 (3)
O3A—C14A	1.454 (4)	C2A—H2A	0.9900
O3B—C13	1.290 (10)	C2B—H2B	0.9900
O3B—C14B	1.455 (11)	C3A—H31A	0.9800
N9—C8A	1.373 (3)	C3A—H31B	0.9800
N9—C9A	1.374 (3)	C3B—H32A	0.9800
N9—H9	0.8700	C3B—H32B	0.9800
C1—C2B	1.60 (2)	C4A—H4A	0.9800
C1—C2A	1.538 (4)	C4A—H4B	0.9800
C1—C9A	1.433 (3)	C4B—H41	0.9800
C2A—C13	1.485 (4)	C4B—H42	0.9800
C2A—C3A	1.508 (4)	С5—Н5	0.9400
C2B—C3B	1.36 (2)	С6—Н6	0.9400
C2B—C13	1.45 (2)	С7—Н7	0.9400
C3A—C4A	1.506 (4)	С8—Н8	0.9400
C3B—C4B	1.506 (4)	C14A—H14B	0.9700
C4A—C41	1.497 (3)	C14A—H14C	0.9700
C4B—C41	1.497 (3)	C14A—H14A	0.9700
C5—C42	1.398 (3)	C14B—H14D	0.9700
C5—C6	1.362 (4)	C14B—H14E	0.9700
C6C7	1.404 (4)	C14B—H14F	0.9700
C/C8	1.376 (4)		
01…02A	3.210 (3)	C9A…H31A	3.0600
O1…N9	2.941 (2)	C14A···H6 ^{xiii}	3.0900
O1···C5 ⁱ	3.389 (3)	C14B···H6 ^{xiii}	3.0900
01…O2B	2.986 (14)	C14B····H32B ⁱ	2.8600
O1…N9 ⁱⁱ	2.883 (2)	C42···H4B ^{xi}	3.0900
O2A…C8 ⁱⁱⁱ	3.371 (3)	C42…H42 ^{xi}	3.0900
O2A…C14A ^{iv}	3.337 (3)	H2A…C6 ^{xi}	2.8200
02A…01	3.210 (3)	H2B…C7 ^{vii}	2.7000
O2A…C7 ⁱⁱⁱ	3.397 (4)	H2B···C3A	1.8000
O2B…O1	2.986 (14)	H2B····C4A	2.9500
O3B···C8 ⁱⁱⁱ	3.280 (10)	H2B…H7 ^{vii}	2.2000
O1…H9 ⁱⁱ	2.0700	H4A…O3A ^{viii}	2.8400
О1…Н9	2.8200	H4B···C8A ^{xi}	2.9400
O2A…H8 ⁱⁱⁱ	2.8400	H4B····C42 ^{xi}	3.0900
O2A…H31A	2.7000	H5····C5 ^x	3.0800
O2A…H14B	2.5900	H5…H5 ^x	2.2900
O2A…H14C	2.5300	H6…C14B ^{xii}	3.0900
O2A…H14B ^{iv}	2.3900	H6…H14D ^{xii}	2.2800

O2A…H7 ⁱⁱⁱ	2.8800	H6…C14A ^{xii}	3.0900
O2B···H14E ^v	2.8700	H7····O2A ^{ix}	2.8800
O2B…H14F	2.5200	H7····H2B ^{vii}	2.2000
O2B…H14E	2.1100	H8····O3B ^{ix}	2.7400
O2B…H32A	2.6700	H8····O2A ^{ix}	2.8400
O2B···H41 ⁱ	2.7200	H8····H14C ^{ix}	2.5200
O3A···H31B ^{vi}	2.9100	Н9…О1	2.8200
$O3A$ ···H14 A^{v}	2.7600	H9…O1 ⁱⁱ	2.0700
O3A…H4A ⁱ	2.8400	H14A…O3A ^v	2.7600
O3B…H8 ⁱⁱⁱ	2.7400	H14B…O2A	2.5900
N9…O1 ⁱⁱ	2.883 (2)	H14B····O2A ^{iv}	2.3900
N9…O1	2.941 (2)	H14C…O2A	2.5300
C1···C7 ^{vii}	3.410 (4)	H14C···C8 ⁱⁱⁱ	2.8700
C2B···C7 ^{vii}	3.55 (2)	H14C…H8 ⁱⁱⁱ	2.5200
C2B···C4A	2.55 (2)	H14D····C6 ^{xiii}	3.0000
C5…O1 ^{viii}	3.389 (3)	H14D…H6 ^{xiii}	2.2800
C7···C1 ^{vii}	3.410 (4)	H14E…O2B	2.1100
C7···C9A ^{vii}	3.529 (4)	H14E···O2B ^v	2.8700
C7···O2A ^{ix}	3.397 (4)	H14E···H14 E ^v	2.3800
C7···C2B ^{vii}	3.55 (2)	H14F…H32B ⁱ	1.9400
C8···C9A ^{vii}	3.442 (3)	H14F····C3B ⁱ	2.8700
C8···O2A ^{ix}	3.371 (3)	H14F…O2B	2.5200
C8···C41 ^{vii}	3.564 (3)	Н31А…О2А	2.7000
C8···O3B ^{ix}	3.280 (10)	Н31А…С9А	3.0600
C8A···C8A ^{vii}	3.490 (3)	H31B····O3A ^{vi}	2.9100
C9A···C8 ^{vii}	3.442 (3)	Н32А…О2В	2.6700
C9A···C7 ^{vii}	3.529 (4)	H32A…C4A	2.0100
C14A…O2A ^{iv}	3.337 (3)	Н32А…Н4А	2.5300
C41····C8 ^{vii}	3.564 (3)	Н32А…Н4В	2.1200
C2B···H4B	3.0800	H32B…C4A	2.0100
C3B…H4B	2.0500	H32B…C14B ^{viii}	2.8600
C3B···H4A	2.0500	H32B…H14F ^{viii}	1.9400
C3B…H14F ^{viii}	2.8700	H32B…H4A	2.1100
C5···H5 ^x	3.0800	H41…O2B ^{viii}	2.7200
C6…H2A ^{xi}	2.8200	Н41…СЗА	2.0500
C6…H14D ^{xii}	3.0000	H41…H4B	1.5900
C7…H2B ^{vii}	2.7000	Н42…СЗА	2.0500
C8···H14C ^{ix}	2.8700	Н42…Н4А	1.5900
C8A…H4B ^{xi}	2.9400	H42···C8A ^{xi}	2.9400
C8A…H42 ^{xi}	2.9400	H42····C42 ^{xi}	3.0900
C13—O3A—C14A	116.0 (2)	C3A—C2A—H2A	107.00

C13—O3B—C14B	116.2 (7)	C13—C2A—H2A	107.00
C8A—N9—C9A	108.92 (17)	C13—C2B—H2B	99.00
С9А—N9—H9	126.00	C3B—C2B—H2B	99.00
C8A—N9—H9	126.00	C1—C2B—H2B	99.00
01—C1—C2A	120.4 (2)	C2A—C3A—H31A	108.00
O1—C1—C9A	125.0 (2)	C2A—C3A—H31B	108.00
C2A—C1—C9A	114.4 (2)	H31A—C3A—H31B	107.00
O1—C1—C2B	119.4 (8)	C4A—C3A—H31A	108.00
C2B—C1—C9A	112.2 (8)	C4A—C3A—H31B	108.00
C1—C2A—C13	109.7 (2)	C2B—C3B—H32A	106.00
C3A—C2A—C13	113.9 (2)	C2B—C3B—H32B	106.00
C1—C2A—C3A	112.7 (2)	C4B—C3B—H32A	106.00
C3B—C2B—C13	126.8 (16)	C4B—C3B—H32B	106.00
C1—C2B—C3B	118.0 (14)	H32A—C3B—H32B	106.00
C1—C2B—C13	108.2 (14)	C3A—C4A—H4A	110.00
C2A—C3A—C4A	115.4 (2)	C41—C4A—H4A	110.00
C2B—C3B—C4B	126.3 (9)	C41—C4A—H4B	109.00
C3A—C4A—C41	110.6 (2)	C3A—C4A—H4B	110.00
C3B—C4B—C41	110.6 (2)	H4A—C4A—H4B	108.00
C6—C5—C42	119.7 (2)	C41—C4B—H42	109.00
C5—C6—C7	120.7 (3)	C3B—C4B—H41	110.00
C6—C7—C8	121.5 (3)	C3B—C4B—H42	110.00
C7—C8—C8A	117.8 (2)	H41—C4B—H42	108.00
N9—C8A—C8	130.6 (2)	C41—C4B—H41	110.00
N9—C8A—C42	107.85 (18)	С6—С5—Н5	120.00
C8—C8A—C42	121.6 (2)	С42—С5—Н5	120.00
N9—C9A—C1	125.8 (2)	С7—С6—Н6	120.00
N9—C9A—C41	109.53 (18)	С5—С6—Н6	120.00
C1—C9A—C41	124.7 (2)	С8—С7—Н7	119.00
O2A—C13—O3A	121.7 (2)	С6—С7—Н7	119.00
O2A—C13—C2A	121.2 (2)	C8A—C8—H8	121.00
O3A—C13—C2A	117.2 (2)	С7—С8—Н8	121.00
O2B—C13—O3B	109.2 (9)	H14B—C14A—H14C	109.00
O2B—C13—C2B	102.2 (12)	H14A—C14A—H14C	110.00
O3B—C13—C2B	148.4 (10)	O3A—C14A—H14A	109.00
C4A—C41—C42	130.4 (2)	O3A—C14A—H14B	109.00
C9A—C41—C42	107.00 (19)	O3A—C14A—H14C	109.00
C4B—C41—C9A	122.59 (19)	H14A—C14A—H14B	109.00
C4B—C41—C42	130.4 (2)	O3B—C14B—H14D	109.00
C4A—C41—C9A	122.59 (19)	O3B—C14B—H14E	109.00
C5—C42—C41	134.6 (2)	O3B—C14B—H14F	109.00
C8A—C42—C41	106.70 (19)	H14D—C14B—H14E	110.00
C5—C42—C8A	118.7 (2)	H14D—C14B—H14F	109.00
C1—C2A—H2A	107.00	H14E—C14B—H14F	109.00
C14A—O3A—C13—C2A	179.7 (2)	C3A—C4A—C41—C9A	-19.1 (3)
C14A—O3A—C13—O2A	-0.1 (3)	C3A—C4A—C41—C42	159.3 (3)
C8A—N9—C9A—C1	177.0 (2)	C6—C5—C42—C41	-179.6 (3)
C8A—N9—C9A—C41	-0.7 (3)	C6—C5—C42—C8A	-1.3 (4)
C9A—N9—C8A—C8	-179.4 (2)	C42—C5—C6—C7	0.6 (4)

C9A—N9—C8A—C42	0.3 (2)	C5—C6—C7—C8	0.2 (4)
O1-C1-C9A-N9	-0.4 (4)	C6—C7—C8—C8A	-0.3 (4)
C2A-C1-C9A-C41	-8.4 (3)	C7—C8—C8A—C42	-0.4 (4)
O1-C1-C2A-C13	-24.7 (3)	C7—C8—C8A—N9	179.1 (2)
C9A—C1—C2A—C3A	32.3 (3)	N9—C8A—C42—C5	-178.5 (2)
C9A-C1-C2A-C13	160.4 (2)	N9-C8A-C42-C41	0.3 (3)
O1-C1-C9A-C41	177.0 (2)	C8—C8A—C42—C41	179.9 (2)
C2A-C1-C9A-N9	174.2 (2)	C8—C8A—C42—C5	1.2 (4)
O1—C1—C2A—C3A	-152.8 (2)	N9—C9A—C41—C4A	179.6 (2)
C1—C2A—C13—O3A	105.7 (3)	C1—C9A—C41—C42	-176.9 (2)
C3A—C2A—C13—O2A	53.0 (4)	N9-C9A-C41-C42	0.9 (3)
C3A—C2A—C13—O3A	-126.9 (3)	C1—C9A—C41—C4A	1.9 (4)
C13—C2A—C3A—C4A	-177.9 (2)	C4A—C41—C42—C5	-0.9 (5)
C1—C2A—C13—O2A	-74.4 (3)	C4A—C41—C42—C8A	-179.3 (2)
C1—C2A—C3A—C4A	-52.1 (3)	C9A—C41—C42—C5	177.8 (3)
C2A—C3A—C4A—C41	44.1 (3)	C9A—C41—C42—C8A	-0.7 (3)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+1, -*y*+1, -*z*; (iii) *x*, *y*, *z*+1; (iv) -*x*+1, -*y*+1, -*z*+1; (v) -*x*+1, -*y*+2, -*z*+1; (vi) -*x*, -*y*+2, -*z*+1; (vii) -*x*+1, -*y*+2, -*z*+1;

Hydrogen-bond geometry $(Å, \circ)$

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N9—H9···O1 ⁱⁱ	0.87	2.07	2.883 (2)	155
C14A—H14B···O2A ^{iv}	0.97	2.39	3.337 (3)	166
Symmetry codes: (ii) - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> ; (iv) - <i>x</i> +1, - <i>y</i> +	1, <i>-z</i> +1.			

